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Abstract—The boundary-layer differential equations for laminar flow over permeable wedges with suc-
tion, including isothermal and variable wall temperature distributions, have been solved. By use of the
present solutions, the heat transfer and skin friction for laminar flow over any arbitrary geometry can
be calculated, The application of the solutions to the binary gas flow and condensation is demonstrated,
and the relation between the mass condensed, the heat removed, and the surface temperature is derived.

Résumé-—Les équations différentielles de la couche limite laminaire avec aspiration sur des diédres

poreux, dans le cas de distributions de température de paroi variables ou non, ont été résolues. L’utilisa~

tion de ces solutions permet le caicul de la transmission de chaleur et du frottement 3 la paroi pour un

écoulement laminaire sur une forme quelconque. I est démontré que ces solutions sont applicables 2

Técoulement d’un gaz binaire avec condensation, la relation entre la masse condensée, la chaleur
enlevée et 1a température de surface est donnée.

Zusammenfassung—Die Grenzschichtgleichungen der Laminarstromung tiber durchldssige Kanten mit

Absaugung wurden fiir konstante und verdnderliche Verteilungen der Wandtemperatur geldst. Mit

Hilfe dieser Losungen kann der Wirmeiibergang und die Oberflichenreibung bei Laminarstromung

fiir beliebig geformte Korper berechnet werden. Eine Anwendung der Losungen auf den biniren

Gasstrom und Xondensation wird gegeben und die Beziehung zwischen Kondensatmenge, abge-
fithrter Wirme und Oberflichentemperatur abgeleitet.

Annoranuda—B crathe UPUBOAATCS pelieHHA AudPepeH INATLHEX YPABHEHIT TOYPAHKIHOTO
€710M [ TAMHHAPHOTO NOTOKA, 00TEKAI0INETO KIINH ¢ TPOHUIIAeMEIMM NOREPXHOCT AMMU, Uepes
KOTOpHIE OTCACHIBACTCH MMOTPAHMYHLIE ¢J10%. ITpu 3TOM, MOBEPXHOCTL KAMHA MOKeT ORITH HAK
u30TepMuYecKolt, TAK M HeumsorepMuMyeckoii. Mcnonasays HaCTOAIIME PEUIEHUS, MOMHO
BRIYHCIHTE TEINIONEPEHOC U IOBEPXHOCTHOS TpEeHHE OIA JAMHHAPHOIO TIOTOKA IO
TIOBEPXHOCTH TeNA NPouM3Boabkolt dopmi. PemeHme pacrmpoCTpaHeHo HA CIyYan HOTOKOB
Ounapuoro rasa u HKoHgeHcapumd. Ilomyueno cOOTHONIEHME MEMIY HKOHEHCHPOBAHHOM
MacCOM, MOTOKOM Tenaa M TeMOeparypoll MOBEepXHOCTH Telna.

NOMENCLATURE h, heat transfer coefficient ==
A, constant; qi(Ty — T,);
B,  constant; hy,,  latent heat of condensation;
C,  constant; k,  thermal conductivity of fluid
Cy, G, integration constants; m,  rate of condensation;
C,.. local friction coefficient = [1(2u/0y),,} m,  Eulers number, equation (6); .
pU%/2 n, wall temperature parameter, equation

Cps specified heat at constant pressure; ;3
D,  coefficient of ordinary diffusion; Nu,, local Nusselt number = hx/k;
E, constant; P, heat flux parameter appearing

, dimensionless stream function equation q. = Ex»;

(5), f = ¢/+/(Uxv); Pr,  Prandtl number = pc,/k;
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s local heat flux;

Reynolds number = Ux/v;

Schmidt number = »/D;

T, temperature;

u, velocity component in x direction;

U, velocity component in x direction at
the outer edge of the boundary layer;

z, velocity component in y direction;

W,  mass fraction or concentration;

X, co-ordinate along the wall surface;

¥, co-ordinate normal to the wall surface;
7, dimensionless distance from the wall,
equation (5);

a, thermal diffusivity;
it, dynamic viscosity;

v, kinematic viscosity = p/p;
I density;
8, dimensionless temperature, equation
5);
&, dimensionless concentration =
(WH Ww)/Wco - w);

b, stream function, equation (4).

Subscripts
w, wall (y = 0);
i, vapor component;
iso,  isothermal wall;
o,  conditions at outer edge of boundary
layer.,

Superscripts
Primes () denotes differentiation;
three-dimensional variables.

1. INTRODUCTION
IT 1s well known that the skin friction and heat
transfer in incompressible laminar flow over
wedge-shaped bodies can be accurately calculated
by solving the boundary layer differential
equations, provided that the prescribed surface
temperature is a power function of the distance
measured from the leading edge. For flow over
an arbitrary body shape with known pressure or
velocity distribution where there exists no
similarity the skin friction and heat transfer are
conventionally found by an approximate method,
either the integral method or the equivalent
wedge flow approximation. Both of these two
methods yield sufficiently accurate results for
most engineering applications. To apply the
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equivalent wedge flow method for the prediction
of skin friction and heat transfer it is necessary
to have the solutions of the boundary layer
equations for wedge type flows. Such solutions
are generally available for the impermeable
wedge {1, 2, 3, 4, 5] and for the porous wedge
with blowing [6, 7, 8, 9, 10, 11] including the
consideration of a variable surface temperature
distribution.

However, in the case of a porous wedge with
suction [8, 9, 10] the available information is
very limited. For the flat plate with suction
Emmons and Leigh [10] have furnished solutions
of the momentum equation, while the corres-
ponding heat transfer results for the isothermal
porous plate were presented by Schlichting and
Bussemann ([8] and Hartnett and Eckert [9].
These latter investigations [8, 9] also included
heat transfer and skin friction results for an
isothermal plane stagnation region with wall
suction. This limited information is not sufficient
to allow the application of the equivalent wedge
flow method to flow over an arbitrary shaped
body with wall suction. Such a flow situation
may occur in boundary layer control applica-
tions, in flow over porous surface such as para-
chutes, etc.

1t is the purpose of this paper to report the
solutions of the boundary layer equations for
laminar flow over permeable wedges with suc-
tion, including isothermal and variable wall
temperature distributions. The flow is assumed
to be incompressible with constant properties
and the Prandtl number is taken to be 0-73.

2. DIFFERENTIAL EQUATIONS AND BOUNDARY
CONDITIONS
The boundary-layer equations for two-
dimensional steady incompressible laminar flow
with constant properties are:

Continuity:

ou v

— b ==

el 0 (1)
Momentum:

ou ou &u dat
P M Y PUgs 2)
Energy:
o oT &*T
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Since the Mach number has been assumed to be
small (i.e. incompressible flow) the dissipation
and pressure gradient terms are negligible and
have been omitted from the energy equation.
The boundary conditions are:

Momentum:

u=20 aty =0
v =14x)aty =0
u=Ukx)asy—> «©
Energy:
T=Tyx)aty =0
T=Te

The continuity equation can be satisfied by
introducing a stream function, ¢, such that

o o
= b} U= — a . (4)

as y— oc.

u

The momentum and energy equations can be
transformed to the corresponding ordinary
differential equations by the following substi-
tutions [9]:

y Ux I
SN
I = F©
o — T —Tux)
o TJO - w(x) J

where f and 6 are assumed to be a function of
7 only.

For flow over an infinite wedge of angle
Bm [B = 2m/(m + 1)] the free stream velocity U,
just outside the boundary layer, can be shown
to be:

U= Axm (6)

where m is known as the Euler number.

It will be assumed that the temperature differ-
ence between the wall and the free stream varies
as Bx", ie.:

Ty(x) — Teo = Bx™. @)
By applying the above relations, the momentum

and energy equations are transformed into the
following forms:
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Momentum:
1

o+t e mrr =0 ®

Energy:
6+ Pr'"—;lfe' +nPrf' (1 —8) =0. (9)

The velocity components, # and », can be
expressed in terms of the new variables as:

g )
 (10)

v 1 il

U= 3umeyl e+ D+ = m)]J

u
U

where Re, = Ux/v.
The boundary conditions are:

f1=0  @=0)

. 2 v, -0
fo=fe= =y VR paty =
fr=1

_ ?aS'q—>OO
0 =1 J

In the second boundary condition the dimen-
sionless suction parameter f,, may be taken as
any constant value, thereby ensuring that the
solution will depend only on the new variable 7.
This requires the suction velocity distribution
to vary in the following manner:

m-+1

2

x (m—1)/2,

¥ P~
Lw

Thus, for the flat plate v,, ~ (1/4/x) and for the
plane stagnation point, v,, = constant. For any
other distribution of suction the solutions will
depend on x and the resulting velocity profile
will not be affine.

Note that the momentum equation is inde-
pendent of the energy equation for constant
fluid properties and hence can be solved inde-
pendently. Once the solution of the momentum
equation is obtained the f(y) and f'(n) values are
utilized to solve the energy equation.
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3. INTEGRATED FORMS OF THE BOUNDARY
LAYER EQUATIONS AND THE METHOD
OF SOLUTION

In the present analysis the momentum and
energy equations were written in their integrated
forms and then solved by iteration. The inte-
grated form of the momentum and energy
equations, together with their boundary con-
ditions, are as follows:

fefot rf'dn (12)

F= jf dn (13)

precal e

"+ 1
% exp U Tf;r- fdn] dy + cl} (14)
0

n 1 b
f=— nJ {exp [~JnPr mj-Afdn}
] 0 “

X rPrf’(l 9
' F (15)
;

X exp [J’? Pr T;—‘l fdn] dy \fdn
+ G, Jn exp [ — r Pr ’_"_tl fdn] dy
0 0 2 J

where

1 —m [(exp {— [§ [(m + 1)/2] fdn}
_ [P = Dexp{filom + 1)/2] fdn} dn) dn

Co= T Eexp (— fallm + 121 fdn} dy
(16)
L+ n f@(exp {—[3 Pr [(m + 1)/2] fdn}
f1Prf"(1 — 6)
c. — _ P {[3Pr((m+ D2l fdn} dy)dy

[eexp {(—[1Pr [(m + 1))2] fdn}dy
an

The above equations have been solved by use of
the E.R.A. 1103 computer. For any given Euler
number, m, and suction parameter, f,,, an initial
velocity profile f (n) was estimated and sub-
stituted into equation (12) to get an estimated
fo(n). These f/(n) and fy(n) were then used in
equations (16), (14) and (13) consecutively to
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obtain the velocity profile, say f,(y). This f,(»)
was usually different from (). In this case an
intermediate value between f,(y) and f,(y) was
used in place of f;(n) and the above processes
were repeated until a consistent value of ()
was obtained.

In the case of the energy equation the tempera-
ture profile, say 04(n), was first computed directly
from equations (17) and (15) consecutively for
n == 0. For a given temperature parameter » this
8,(n) was substituted into the right-hand sides
of equations (17) and (15) to get an approxi-
mate temperature profile 6,(n). An intermediate
value between 0y(n) and 8,(n) was then used to
obtain a better approximation for 8(n). These
procedures were repeated to get the final result.

4. FRICTION COEFFICIENT AND
HEAT TRANSFER

The friction coefficient C;, is defined as:

C.. = Tw ,u_.(@@y)w
U2 T pUR2

1t is related to the integration constant C, by the

following equation:

Crz v (Re

) 1t
2 :fw = Cl'

(18)

The dimensionless heat transfer parameter, (i.e.
the Nusselt number) is:

/
Nu, = ':f =0, 1/(Re,).
or
Nu, ,
Ry = e =Cr (19)

5. RESULTS AND DISCUSSIONS

The boundary-layer equations have been
solved for several wedge angle and suction
parameters. The temperature parameter n was
varied from —0-5 to 10 except for the plane
stagnation flow where results for n = —1 are
also included. The value of Prandtl number is
taken as 0-73 (air).

The velocity profile and friction coefficient for
flow over wedges with various suction are shown
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FiG. 2. Friction coefficient (flow over wedges with
various suction).

on Figs. 1 and 2, respectively. As expected Fig. 1
shows that the velocity boundary-layer thickness
decreases as the suction increases. This is
responsible for the increase of skin friction as is
revealed by Fig. 2. For large suction, Fig. 2 also
shows that the friction coefficient is approxi-
mately a linear function of m.

The boundary-layer temperature profiles on a
flat plate with power-function wall temperature
variation are shown on Fig. 3 for eight values
of the wall temperature exponent n, with Fig.
3(a) corresponding to the impermeable wall,
while Fig. 3(b) and 3(c) are for the porous plate
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for values of the suction parameter equal to
Jw = 1-0 and 8-0, respectively. Similar presenta-
tions are given on Figs. 4 and 5 for two other
wedge flows corresponding to Euler numbers of
i1and 1.

It is seen from these figures that for a fixed
wedge angle and fixed suction the thermal
boundary-layer thickness is reduced with increase
of n. Consequently, it is expected that the heat
transfer would increase with increase of n. This
conclusion is clearly verified by Figs. 6, 7 and 8
which present the dimensionless heat transfer,
Nu,/+/(Re,), for the three wedge flows. These
figures also show that the heat transfer is
approximately a linear function of n for large
values of suction.

Figure 9 reveals that for negative wall tempera-
ture gradient (negative n), the heat transfer for
variable wall temperature is less than that for
isothermal wall, and for positive wall tempera-
ture gradient (positive n) the heat transfer for
the non-isothermal wall is always larger than
that for isothermal wall. The ratio of non-
isothermal wall heat transfer to the isothermal
wall heat transfer is very sensitive to » for solid
wall and small suction. However, this ratio
increases very gradually with » for large suction.
The same figure also shows that for a fixed
suction and wall temperature variation, this
ratio decreases with increase of free stream
velocity gradient, or Euler number.

6. THREE-DIMENSIONAL STAGNATION FLOW

By means of Mangler’s transformation [12]
the three-dimensional axially symmetric flow
can be transformed to the corresponding two-
dimensional case. For three-dimensional stag-
nation flow the equivalent two-dimensional case
would be the flow over a wedge with Euler
number of 1. It can easily be shown that the
suction velocity, the temperature parameter,
the friction coefficient and the Nusselt number
for the three-dimensional stagnation flow are
related to the associated two-dimensional case
by the following equations:

Suction parameter:

U Ve, = — 2 fun (20)

2
R
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Temperature parameter:

i
3 @n

fi = .
Friction coefficient:
ax \//R—em = '\/3 Cfa: \/Reccl m=1/8" (22}
Nusselt number:
Nu, Nu,
— 2 = 3R
v/Re, v v/ Re, m=1/3

where the superscript bar denotes the three-
dimensional stagnation flow case.

(23)

Hence, in three-dimensional stagnation flow,
if the suction velocity, free stream conditions and
the wall temperature variation A(T,, — T,, = c")
are given the f, and n can be computed from
equations (20) and (21) and the friction coefficient
and Nusselt number can be found from equa-
tions (22) and (23), respectively.

7. APPLICATION OF THE WEDGE FLOW SOLU-

TION TO PREDICT THE SKIN FRICTION AND

HEAT TRANSFER FOR LAMINAR FLOW OVER
ARBITRARY BODY

For flow over any arbitrary two-dimensional

body with given free stream velocity and wall
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temperature distribution the skin friction and
heat transfer can be approximately calculated
by use of the wedge flow solutions. First, the
equivalent Euler number m and the approximate
temperature parameter n can be found by the
following equations:

x dU

m:Z’ dx

__* L
- T w T o0 dx :
In these equations, x is measured from the lead-
ing edge or the forward stagnation point.

With m computed and f,, specified, the skin

friction can be directly read from Fig. 2. The
heat transfer can be found from Figs. 6, 7 and 8

24

n (25)

after the temperature parameter # has been
found from equation (25).

If the heat transfer distribution is prescribed
as g, = Ex?, the wall temperature T,, can be
determined from the heat transfer equation:

P (%9 —k J (-Z) (T — T) 8, (26)

where 8, can be found from Figs. 6, 7 and 8 fora
given m and f,, with n = p 4+ (1 — m)/2.

8. APPLICATION OF WEDGE FLOW SOLUTION
TO BINARY GAS FLOW AND CONDENSATION
In a binary gas flow, the concentration of the
gaseous component can be found by solving the
diffusion differential equation. For constant
fluid properties and a Lewis number of unity the
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differential equations and boundary conditions
for both the dimensionless concentration

oW
N WJJ - Ww
and temperature
T—T,
b=7—7,

are identical [9]. Consequently, the concentra-
tion information can be immediately obtained
from the energy equation solutions, provided
that certain compatibility conditions are satis-
fied. Under the assumptions that the departure
from thermodynamic equilibrium is negligible
and that the wall surface remains wetted, the
following conditions must be satisfied:

(a) The partial pressure of the condensing
vapor must be equal to the vapor pressure of the
liguid at the surface temperature. Therefore,
a specification of the wall temperature fixes the
partial pressure and, consequently, fixes the mass
fraction of the condensing vapor at the wall.
It is obvious that the mass fraction of the vapor
must be greater in the free stream than at the
wall surface if condensation is to occur. This
requires the surface temperature to be lower
than the free stream temperature.
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(b) If there is no net flow of boundary-layer
air into the wall surface this requires the con-
vective velocity toward the wall to be exactly
balanced by the diffusive velocity of the air
away from the wall. In terms of dimensionless
variables:

L W @fee
Wow— Wew = Scifom + D215y @7

Therefore, the condensation rate f,, is related to
the mass fraction of the condensing vapor W,,.

(c) The heat transferred to the wall by con-
vection and by the condensing vapor must be
removed from the wall by a suitably distributed
heat sink:

Ge = hy (T, — T) + by,

Rearranging and expressing in terms of dimen-
sionless variables this may be stated:

9= ()
k(T, — Ty) u/
m—+1 hy,
- 0’ g
(O) + 2 fw Pr czz(Too — w)
For example, if we restrict our attention to the
flat plate geometry (m = 0) with given free

stream conditions, the selection of a constant
wall temperature T, (where T, < T,) fixes the

(28)

1.0
/
os
fm=0
06 +
t
Moo~ Wy f
| — Wy \
04 {
|
0.2
(o)
o] 2 4 6 8 10 12
fVl

Fr3. 10. Effect of suction on concentration (no net air flow at the wall).
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wall mass fraction at a constant value. For the
assumed constant wall temperature boundary
conditions there is a unique relationship between
¢'(0) [identical in value to #'(0)] and £, as shown
in Fig. 6, allowing the wall mass fraction to be
directly related to £, through equation (27).
This is shown on Fig. 10.

Finally, equation (28) must be satisfied and it
is apparent that the heat sink g, must vary as
1/4/x to satisfy the compatibility relations. By
this method it is a simple matter to prepare a
table of values of the dimensionless heat removal
requirements, the mass condensed and the
resulting surface temperatures.

For flows over other wedge-type geometries
(m = 0), the application of the reported results
to the condensation problem becomes more
complex. In such cases, the assumption of a
constant wall temperature results in a constant
value of the partial pressure at the wall, How-
ever, the free stream pressure is varying along
the surface and consequently, the wall mass
fraction will vary along the surface for a constant
wall temperature condition. If the present
solutions are to apply under such circumstances.
the mass fraction term W — Wy, must vary
as a power function x*. For some wedge angles
this condition may be satisfied. Alternatively,
for a fixed wedge angle it may be possible to
find a power function wall temperature distribu-
tion which will give rise to a wall mass fraction
value which will satisfy the compatibility require-
ments imposed by equations (27) and (28).
Detailed consideration of this case is beyond the
scope of the present paper.
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