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Abstract-The boundary-layer differential equations for laminar flow over permeable wedges with suc- 
tion, including isothermal and variable wail temperature distributions, have been solved. By use of the 
present solutions, the heat transfer and skin friction for laminar flow over any arbitrary geometry can 
be calculated, The application of the solutions to the binary gas flow and condensation is demonstrated, 
and the relation between the mass condensed, the heat removed, and the surface tem~rat~ is derived. 

R&urn&-Les equations differentielles de la couche limite laminaire avec aspiration sur des diedres 
poreux, dans Ie cas de distributions de temperature de paroi variables ou non,ont t%C resolues. L’utilisa- 
tion de ces solutions permet le c&xl de la transmission de chaleur et du frottement B la paroi pour un 
Ccoulement Iaminaire sur une forme quel~onque. I1 est demontre que ces solutions sont appI~cab1~ B 
1’~coulement d’un gaz binaire avee condonation, la relation entre la masse condensee, Ia chaleur 

enlevee et la temperature de surface est don&e. 

Zusammenfassung-Die Grenzschichtgleichungen der LaminarstrGmung fiber durchllssige Kanten mit 
Absaugung wurden fur konstante und verlnderliche Verteilungen der Wandtemperatur gel&t. Mit 
Hilfe dieser Lijsungen kann der W&meiibergang und die OberfXchenreibung bei Laminarstrikmung 
fiir beliebig geformte K&per berechnet werden. Elne Anwendung der Ltisungen auf den bin&en 
Gasstrom und Kond~~saiio~ wird gegtben und die Beziehung zwischen ~ondensatmen~, abge- 
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coeBkient of ordinary djffus~o~; WC, 
constant ; P9 
dimensionless stream function equation 
@I, f= ~~~/(~xv); I%, 
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heat transfer coefficient = 

fatent heat of ~ondensat~~~(~~ - Tm” * ‘ 

thermal conductivity of flui; 
rate of condensation; 
Eulers number, equation (6); 
wall temperature parameter, equation 
G% 
foea Nusselt number = hxJA_; 
heat flux parameter appearing in 
qS = Ex”; 
Prandtl number = pcJk; 
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local heat flux; 
Reynolds number = VA-/V; 
Schmidt number = v/D; 
temperature; 
velocity component in x direction; 
velocity component in x direction at 
the outer edge of the boundary layer; 
velocity ~amponent in y direction; 
mass fraction or concentration ; 
co-ordinate along the wall surface; 
co-ordinate normal to the wall surface ; 
dimensionless distance from the wall, 
equation (5); 
thermal diffusivity ; 
dynamic viscosity; 
kinematic viscosity = pfp; 
density ; 
dimensionless temperature, equation 
(51; 
dimensionless concentration = 

(W- ~~)I~~ - WWI; 
stream function, equation (4). 

Subscripts 
IS, wall (y = 0); 
1, vapor component ; 
iso, isothermal wall ; 
co, conditions at outer edge of boundary 

layer. 

Superscripts 
Primes ( ’ ) denotes di~ere~t~ation; 
- three-~mensional variables. 

IT IS well known that the skin friction and heat 
transfer in incompressible laminar flow over 
wedge-shaped bodies can be accurately calculated 
by solving the boundary Iayer differential 
equations, provided that the prescribed surface 
temperature is a power function of the distance 
measured from the leading edge. For flow over 
an arbitrary body shape with known pressure or 
velocity distribution where there exists no 
si~ar~ty the skin friction and heat transfer are 
conventionally found by an approximate method, 
either the integral method or the equivalent 
wedge flow appro~matjo~. Both of these two 
methods yield sufficiently accurate results for 
most engineering applications. To apply the 

equivalent wedge flow method for the prediction 
of skin friction and heat transfer it is necessary 
to have the solutions of the boundary layer 
equations for wedge type flows, Such solutions 
are generally available for the impermeable 
wedge [I, 2, 3, 4> 51 and for the porous wedge 
with blowing 16, 7, 8, 9, 10, If] including the 
consideration of a variable surface temperatLlre 
distribution, 

However, in the case of a porous wedge with 
suction [8, 9, lo] the availabie information is 
very limited. For the flat plate with suction 
Emmons and Leigh [lo] have furnished solutions 
of the momentum equation, while the corres- 
ponding heat transfer results for the isothermal 
porous plate were presented by Schlichting and 
Bussemann [8] and Hartnett and Eckert [9]. 
These latter investigations [8, 91 also included 
heat transfer and skin friction results for an 
isothermal plane stagnation region with wall 
suction. This limited information is not suficient 
to allow the apphcation of the equivalent wedge 
flow method to flow over an arbitrary shaped 
body with wall suction. Such a flow situation 
may occur in boundary layer control applica- 
tions, in flow over porous surface such as para- 
chutes, etc. 

It is the purpose of this paper to report the 
solutions of the boundary layer equations for 
laminar flow over permeable wedges with suc- 
tion, including isothermal and variable wafi 
temperature distributions. The flow is assumed 
to be incompressible with constant properties 
and the Prandtl number is taken to be 0.73. 

2. DIFFERENTIAL EQUATIONS AND BOUNDARY 
CONDITIONS 

The boundary-layer equations for two- 
dimensional steady ~n~ompr~ssib~e faminar flow 
with constant properties are : 

Continuity : 

(If 

Momentum: 

Energy : 
%T 8T @T 
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Since the Mach number has been assumed to be 
small (i.e. incompressible flow) the dissipation 
and pressure gradient terms are negligible and 
have been omitted from the energy equation. 
The boundary conditions are: 

Momentum : 

u=o aty=O 

v = u,(x) at y = 0 

u = U(x) as y + 03 

Energy : 

T = T,(x) at y = 0 

T=T, asy-t cc. 

The continuity equation can be satisfied by 
introducing a stream function, #, such that 

a+ w 
u=ay v=-ax l 

(4) 

The momentum and energy equations can be 
transformed to the corresponding ordinary 
differential equations by the following substi- 
tutions [9] : 

y=Y ux Ji 1 - 
X v 

* ___- 
f = +cJx v) 

e = _T - T&d I 

Tm - T&j J 
where f and 8 are assumed to be a function of 
17 only. 

For flow over an infinite wedge of angle 
@r [/3 = 2m/(m + l)] the free stream velocity U, 
just outside the boundary layer, can be shown 
to be: 

U=Ax” (6) 

where m is known as the Euler number. 
It will be assumed that the temperature differ- 

ence between the wall and the free stream varies 
as Bx”, i.e.: 

TJx) - T, = Bx”. (7) 

By applying the above relations, the momentum 
and energy equations are transformed into the 
following forms : 

Momentum : 

f"' + m!!! y - m [(f ‘)2 - 11 = 0 (8) 

Energy : 

8” + Pr qfS’+nPrf’(l - 0) =O. (9) 

The velocity components, u and Y, can be 
expressed in terms of the new variables as: 

u=“’ I 

(i=&q[-f(m+l)+fWl-41 

c (10) 
V 

2 J 

where Re, = Ux[v. 
The boundary conditions are: 

f’=O (u=O) 7 1 

f =fw=- &I % z/(Rez) 

e =o 

: at 7 = 0 I 

.Ul) 

f’ = 1 1 
as e 4 1 q+cc 

J J 

In the second boundary condition the dimen- 
sionless suction parameter fw may be taken as 
any constant value, thereby ensuring that the 
solution will depend only on the new variable 7. 
This requires the suction velocity distribution 
to vary in the following manner: 

m+l 
z?, N ~ 

2 
X(m-1)/2 

Thus, for the flat plate u, - (l/l/x) and for the 
plane stagnation point, v, = constant. For any 
other distribution of suction the solutions will 
depend on x and the resulting velocity profile 
will not be affine. 

Note that the momentum equation is inde- 
pendent of the energy equation for constant 
fluid properties and hence can be solved inde- 
pendently. Once the solution of the momentum 
equation is obtained the f (7) and f ‘(7) values are 
utilized to solve the energy equation. 
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3. INTEGRATED FORMS OF THE BOUNDARY 
LAYER EQUATIONS AND THE METHOD 

OF SOLUTION 

In the present analysis the momentum and 
energy equations were written in their integrated 
forms and then solved by iteration. The inte- 
grated form of the momentum and energy 
equations, together with their boundary con- 
ditions, are as follows : 

.f=fw+ 'f-7 
s 

(12) 
0 

(13) 

where 

1 - m .lXexp (- Sa, Km + 1)/2lfdT > 
C, = fi (f ‘” - 1) exp Cfi [(m + 1)/2l.fdrl> d?) d? ___-- 

S,” exp {- J?[(m + 1)/21fd~) drl 
(16) 

1 + n Jp(exp {-.Lj Pr Km + 1)/21fd~) 
fi Prf ‘(1 - 0) 

c, = 
exp Cs;I Pr [(m + 1>/2lf% > W d? ____ 
J,” exp {-fiPr [Cm + Wlfdrlhb 

(17) 

The above equations have been solved by use of 
the E.R.A. 1103 computer. For any given Euler 
number, m, and suction parameter, fw, an initial 
velocity profile fi(~) was estimated and sub- 
stituted into equation (12) to get an estimated 
fO($. These f:(q) and f,,(q) were then used in 
equations (16), (14) and (13) consecutively to 

obtain the velocity profile, say ,fi(v). This f;(T) 
was usually different from f:(v). In this case an 
intermediate value between f:(q) and f 1(q) was 
used in place of f;(y) and the above processes 
were repeated until a consistent value of f’(q) 
was obtained. 

In the case of the energy equation the tempera- 
ture profile, say O,(T), was first computed directly 
from equations (17) and (15) consecutively for 
n == 0. For a given temperature parameter n this 
Q,(T) was substituted into the right-hand sides 
of equations (17) and (15) to get an approxi- 
mate temperature profile e,(q). An intermediate 
value between e,,(7) and d,(y) was then used to 
obtain a better approximation for 0(y). These 
procedures were repeated to get the final result. 

4. FRICTION COEFFICIENT AND 
HEAT TRANSFER 

The friction coefficient C,, is defined as: 

/@@JhJ C,, = Tw = _~~_~~ 
P U212 pus/2 * 

It is related to the integration constant C, by the 
following equation : 

The dimensionless heat transfer parameter, (i.e. 
the Nusselt number) is: 

Nu, = F = 8; d(Re,). 

or 

(19) 

5. RESULTS AND DISCUSSIONS 

The boundary-layer equations have been 
solved for several wedge angle and suction 
parameters. The temperature parameter n was 
varied from -0.5 to 10 except for the plane 
stagnation flow where results for II = -1 are 
also included. The value of Prandtl number is 
taken as 0.73 (air). 

The velocity profile and friction coefficient for 
flow over wedges with various suction are shown 
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FIG_ 1. Velocity profile for flow over wedges with various suction. [a) m = 0; (b) m = Q; (c)m == 1. 
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FIG. 2. Friction coefficient (flow over wedges with 
various suction). 

on Figs. 1 and 2, respectively. As expected Fig. 1 
shows that the velocity boundary-layer thickness 
decreases as the suction increases. This is 
responsible for the increase of skin friction as is 
revealed by Fig. 2. For large suction, Fig. 2 also 
shows that the friction coefficient is approxi- 
mately a linear function of m. 

The boundary-layer temperature profiles on a 
flat plate with power-function wall temperature 
variation are shown on Fig. 3 for eight values 
of the wall temperature exponent n, with Fig. 
3(a) corresponding to the impermeable wall, 
while Fig. 3(b) and 3(c) are for the porous plate 

for values of the suction parameter equal to 
fW = 1-O and 8.0, respectively. Similar presenta- 
tions are given on Figs. 4 and 5 for two other 
wedge flows corresponding to Euler numbers of 
$ and 1. 

It is seen from these figures that for a fixed 
wedge angle and fixed suction the thermal 
boundary-layer thickness is reduced with increase 
of n. Consequently, it is expected that the heat 
transfer would increase with increase of n. This 
conclusion is clearly verified by Figs., 6, 7 and 8 
which present the dimensionless heat transfer, 
Nu,/l/(Re,), for the three wedge flows. These 
figures also show that the heat transfer is 
approximately a linear function of n for large 
values of suction. 

Figure 9 reveals that for negative wall tempera- 
ture gradient (negative n), the heat transfer for 
variable wall temperature is less than that for 
isothermal wall, and for positive wall tempera- 
ture gradient (positive n) the heat transfer for 
the non-isothermal wall is always larger than 
that for isothermal wall. The ratio of non- 
isothermal wall heat transfer to the isothermal 
wall heat transfer is very sensitive to n for solid 
wall and small suction. However, this ratio 
increases very gradually with iz for large suction. 
The same figure also shows that for a fixed 
suction and wall temperature variation, this 
ratio decreases with increase of free stream 
velocity gradient, or Euler number. 

6. THREE-DIMENSIONAL STAGNATION FLOW 

By means of Mangler’s transformation [12] 
the three-dimensional axially symmetric flow 
can be transformed to the corresponding two- 
dimensional case. For three-dimensional stag- 
nation flow the equivalent two-dimensional case 
would be the flow over a wedge with Euler 
number of 4. It can easily be shown that the 
suction velocity, the temperature parameter, 
the friction coefficient and the Nusselt number 
for the three-dimensional stagnation flow are 
related to the associated two-dimensional case 
by the following equations: 

Suction parameter: 
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1 

FIG. 3. Temperature profile for Row over a flat plate with various suction and variable wall temperature. 
(4 fur = ‘A m = 0; CbZ &n = I, m e 0; {c) fm = 8, m = 0. 
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FIG. 6. Heat transfer for flow over flat plate with various suction and variable wall temperature. 
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FIG. 7. Heat transfer for flow over wedge with various suction and variable wall temperature. 
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FIG. 8. Heat transfer for two-dimensional stagnation flow with 
various suction and variable wail temperature. 

Temperature parameter: 

fi=‘2 
3’ (21) 

Friction coefficient: 

Nusselt number: 

where the superscript bar denotes the three- 
dimensional stagnation flow case. 

Hence, in three-dimensional stagnation flow, 
if the suction velocity, free stream conditions and 
the wall temperature variation fi(T, - T, = c-i;) 
are given the fw and PI can be computed from 
equations (20) and (21) and the friction coefficient 
and Nusselt number can be found from equa- 
tions (22) and (23), respectively. 

7. APPLICATION OF THE WEDGE FLOW SOLU- 
TION TO PREDICT THE SKIN FRICTION AND 
HEAT TRANSFER FOR LAMINAR FLOW OVER 

ARBITRARY BODY 

For flow over any arbitrary two-dimensional 
body with given free stream velocity and wall 
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FIG. 9. Effect of wall temperature variation on heat transfer 
for flow over wedges with various suction. 

temperature distribution the skin friction and 
heat transfer can be approximately calculated 
by use of the wedge flow solutions. First, the 
equivalent Euler number m and the approximate 
temperature parameter n can be found by the 
following equations: 

x dU 

m=U. h-x 

dT n=--X- --!! 
T, - Tcx, dx * 

(24) 

(25) 

In these equations, x is measured from the lead- 
ing edge or the forward stagnation point. 

With m computed and fw specified, the skin 
friction can be directly read from Fig. 2. The 
heat transfer can be found from Figs. 6, 7 and 8 

after the temperature parameter n has been 
found from equation (25). 

If the heat transfer distribution is prescribed 
as qz = ZW, the wall temperature T, can be 
determined from the heat transfer equation: 

where 0: can be found from Figs. 67 and 8 for a 
given m andf,, with n = p + (1 - m)/2. 

8. APPLICATION OF WEDGE FLOW SOLUTION 
TO BINARY GAS FLOW AND CONDENSATION 

In a binary gas flow, the concentration of the 
gaseous component can be found by solving the 
diffusion differential equation. For constant 
fluid properties and a Lewis number of unity the 
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differential equations and boundary conditions 
for both the dimensionless concentration 

d= 
w- w, 

w, - w, 

and temperature 

*=-T-T, 
T, - T, 

are identical [9]. Consequently, the concentra- 
tion information can be immediately obtained 
from the energy equation solutions, provided 
that certain compatibility conditions are satis- 
fied. Under the assumptions that the departure 
from thermodynamic equilibrium is negligible 
and that the wall surface remains wetted, the 
following conditions must be satisfied: 

(a) The partial pressure of the condensing 
vapor must be equal to the vapor pressure of the 
liquid at the surface temperature. Therefore, 
a specification of the wall temperature fixes the 
partial pressure and, consequently, fixes the mass 
fraction of the condensing vapor at the wall. 
It is obvious that the mass fraction of the vapor 
must be greater in the free stream than at the 
wall surface if condensation is to occur. This 
requires the surface temperature to be lower 
than the free stream temperature. 

(b) If there is no net flow of boundary-layer 
air into the wall surface this requires the con- 
vective velocity toward the wall to be exactly 
balanced by the diffusive velocity of the air 
away from the wall. In terms of dimensionless 
variables : 

1 - WIM (a+/ay), 
-wiw - w,, = s~{[(n?+fYilf;j~ (27) 

Therefore, the condensation ratef, is related to 
the mass fraction of the condensing vapor WI,. 

(c) The heat transferred to the wall by con- 
vection and by the condensing vapor must be 
removed from the wall by a suitably distributed 
heat sink: 

qz = h, (T, - Tw) + kh,,. 

Rearranging and expressing in terms of dimen- 
sionless variables this may be stated: 

qz VX 

W, - Tw) A)= u 

= O’(O) + m+fw Pr c (T hT T ). (28) 
P cc w 

For example, if we restrict our attention to the 
flat plate geometry (m = 0) with given free 
stream conditions, the selection of a constant 
wall temperature T, (where T, < T,) fixes the 

0.6 

was wy 
I-WY 
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fw 

FIG. 10. Effect of suction on concentration (no net air flow at the wall). 
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wall mass fraction at a constant value. For the 
assumed constant wall temperature boundary 
conditions there is a unique relationship between 
+‘(O) [identical in value to 8’(O)] and& as shown 
in Fig. 6, allowing the wall mass fraction to be 
directly related to & through equation (27), 
This is shown on Fig. 10. 

Finally, equation (28) must be satisfied and it 
is apparent that the heat sink qx must vary as 
I/QX to satisfy the compatibility relations. By 
this method it is a simple matter to prepare a 
table of values of the dimensionless heat removal 
requirements, the mass condensed and the 
resulting surface temperatures. 

For flows over other wedge-type geometries 
(BE i: O}, the application of the reported results 
to the condensation problem becomes more 
complex. in such cases, the assumption of a 
constant waft tem~rature results in a constant 
value of the partial pressure at the wall. How- 
ever, the free stream pressure is varying along 
the surface and ~onsequently~ the wall mass 
fraction will vary along the surface for a constant 
wall temperature condition. If the present 
solutions are to apply under such Gircumstan~es. 
the mass fraction term W’roo - W,, must vary 
as a power function xn. For some wedge angles 
this condition may be satisfied. Alternatively, 
for a fixed wedge angle it may be possible to 
find a power function wall temperature distribu- 
tion which will give rise to a wali mass fraction 
value which wilf satisfy the compatibility require- 
ments imposed by equations (27) and (28). 
Detailed consideration of this case is beyond the 
scope of the present paper. 
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